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A method is presented for predicting the frequencies of tones produced by
high Reynolds number, subsonic #ow through a duct with a gap. An inviscid,
linear model of the #uid motion is developed in which the shear layer delimiting
the jet formed between the inlet and exit of the duct gap is modelled as a
vortex sheet. The linear analysis is used to calculate the Rayleigh conductivity
parameter which is then analyzed to "nd the frequency dependence of the
shear layer behavior. The calculations for the case when an external load is
applied across the shear layer have been carried out for Strouhal numbers from
0 to 10, Mach numbers from 0)001 to 0)5, and a gap length-to-diameter ratio of
0)5 to 2)0. The resonant frequencies have been calculated for Mach numbers
ranging from 0)001 to 0)8 at a length-to-diameter ratio of 1)0. The results for the
forced motion in the low Mach number limit compare well with previous
incompressible predictions for #ow past wall apertures. The resonant frequency
predictions have been validated at the Mach number of 0)52 through comparison
with experimental data.

( 2000 Academic Press
1. INTRODUCTION

Flow through a thin-walled duct with a gap can produce tonal low-frequency noise.
An example of this phenomenon was reported by Paterson et al. [1]. Their paper
describes the development of an anechoic facility which includes an open-jet wind
tunnel. In their experiments, the tunnel itself created broadband noise as well as
tones. They attributed the tones to &&edge tone interaction between the contraction
outlet and the jet collector''. The example illustrates tones created in the absence of
an external force. The frequency of such tones will be referred to as resonant
frequencies throughout this paper. In addition to resonant frequencies, other tones
may be created by #ow through a duct with a gap when there exists an external
time-dependent load on the system. The frequency of these tones will be referred to
as the forced frequencies.

When the #ow Reynolds number is high, both the resonant and forced
frequencies of a duct/gap con"guration can be predicted using a linearized model of
the #uid dynamics. For high Reynolds number, the shear layer that forms
downstream of the sharp edge due to viscous forces can be inviscidly approximated
0022-460X/00/040859#20 $35.00/0 ( 2000 Academic Press



860 S. M. GRACE
as a vortex sheet, and vortex shedding from a wall edge can be simulated by
imposing the Kutta condition.

In this research, a linearized model with imposed Kutta condition and embedded
vortex sheet approximation is used to calculate the forced and resonant frequencies
of #ow through a cylindrical duct with gap as shown in Figure 1. The method hinges
upon analyzing a frequency-dependent parameter known as the Rayleigh
conductivity K

R
(u) which is de"ned as
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where Q(t) is the volume #ux through the outer edge of the duct which contains the
shear layer, and p

i
(u) is a Fourier component of an applied load. The applied load

p
i
is assumed to be spatially constant along the shear layer in the opening for this

calculation. This assumption is consistent with focusing one's attention on the
response of the shear layer to long-wavelength disturbances.

The net volume #ux through the boundaries of the duct opening is proportional
to the total displacement of the vortex sheet in the normal direction to the sheet, so
that
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where v
r

is the radial velocity, f
r

is the normal displacement,
(D/Dt)"(L/Lt)#; (L/Lz) is the convective derivative, and A is equivalent to the
surface area of the curved sides of a cylinder that would "t in the duct opening.

When the applied load p
i
is periodic in time with frequency u, equation (1) can be

written as

K
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, (3)

where Q (u) is the Fourier transform of the volume #ux. In a real #uid, K
R
(u) is

generally a complex function of the frequency u. It was shown in reference [2] that
at frequencies u for which Im(K

R
(u)) is greater than zero, the shear layer motion

will amplify at the expense of the energy in the mean #ow. It is at these frequencies
then that the con"guration can be forced to produce a tone. By examination of
equation (1) one can see that the resonant frequencies of the system, i.e., the
frequencies at which the volume #ux will grow naturally, occur at frequencies which
coincide with poles of the Raleigh conductivity parameter. It was shown in
reference [2] that tone predictions based on this method agreed well with
experiments.

The mathematical formulation of the Raleigh conductivity parameter for the
thin-walled cylindrical duct is described in section 2. The formulation follows the
methodology used in references [3}5] where the vortex sheet displacement is
calculated by solving an integral equation and then used in equation (2) to
determine the volume #ux. The Rayleigh conductivity has been calculated as
a function of the reduced frequency, p6 "ua/;, where a is the radius of the duct and
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; is the mean velocity of the #uid through the duct. The results are reported in
section 3. The possible forced tones are recorded for #ow Mach numbers varying
from 0)001 to 0)5 and for duct gap length-to-diameter ratios of 0)5, 1)0, and 1)5. The
resonant tones that are computed using the method described in references [6, 7]
are tabulated for a length-to-diameter ratio of 1)0 and for Mach numbers from
0)001 to 0)8. Finally, the predicted resonant frequencies are compared with the
tones measured by Paterson et al. [1] in their experiment.

2. MATHEMATICAL FORMULATION

The Rayleigh conductivity, equation (3), used to determine the frequency bands
corresponding to a forced instability or a natural instability, depends on the volume
#ux Q through the edges of the duct gap region. The determination of Q for the
cylindrical duct con"guration is detailed in this section and depends heavily on the
construction of an appropriate Green's function. The development of the Rayleigh
conductivity equation for this research extends prior applications of the Rayleigh
conductivity method [2, 6, 4] to include the e!ects of compressibility.

An inviscid, linear model of the #uid dynamics leads to a Helmholtz equation for
the velocity potential inside and outside the cylinder. Speci"cally, the linearized
continuity and Euler equations are
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D
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"!+p@, (4, 5)

which can be combined to form a single convective wave equation for the unsteady
potential / de"ned as +/"u. The adiabatic relation p@"o@c2

=
is used where c

=
is

the speed of sound. The resulting convective wave equation with constant
coe$cients can be transformed into the Helmholtz equation in cylindrical
co-ordinates by using the Prandtl}Glauert transformation de"ned as

rJ"b
i,o

r, hI "h, zJ"z

and the transformation
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where M is the Mach number, b"J1!M2, K"u/c
=

b2, and the subscripts i,
o represent inside and outside the cylinder respectively. Thus, the Helmholtz
equation can be written for the transformed velocity potential U as
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)U"0. (6)

For ducted #ow, the #uid outside the cylinder is not moving and therefore
;
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Solutions to the outer and inner Helmholtz equations are obtained in terms of
the normal derivative of the shear layer motion by introducing a Green's function
that satis"es

(+I 2#K2
i,o

)G"0 (7)
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for the physical locations r S T a and the condition

LG/LrJ"d(z!z
0
) (8)

on the boundary r"a. Because the z variable is not a!ected by the
Prandtl}Glauert transformation the 3 notation has been dropped in reference to z.
This Green's function is modelled after the one used for the two-dimensional
problem of #ow past a slot in reference [8].

A Fourier transform of the Helmholtz equation and the boundary condition in
the z direction using
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results in wavenumber components of the transformed Green's function GK
satisfying
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The desired Green's function will act as a transfer function in the near "eld of the
source and thus the kth Fourier components inside and outside a cylinder of radius
a are
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where I
v
and K

v
are the modi"ed Bessel functions of order v. In order to transform

the initial Green's functions back to z space, one must calculate
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We are interested in Green's function for the case of rPa and z close to z
0
. When

one considers the near "eld of z, the integrals (11) and (12) can be simpli"ed (see
Appendix A). The asymptotic forms of the inner and outer Green's function are

G
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Once an appropriate Green's function has been determined, it can be used to "nd
the potential at any point along the duct gap opening due to a distribution of
sources along the gap opening. For the inner Green's function this gives
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From the de"nition of U it can be shown that
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where m
r
is the displacement of the vortex sheet in the radial direction (with no

b factor taken out and e~*ut suppressed).
By substituting these relations into equation (14), integrating by parts, and

rearranging, one can show that the perturbation velocity potentials inside and
outside the duct become
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Across the vortex sheet the pressure must be continuous. Without loss of
generality, the applied load can be assumed to be inside the duct. Then, inside the
duct, there is pressure associated with both the load p

i
and the potential #ow

disturbance described by equation (16). Outside the cylinder there is only pressure
associated with the motion of the vortex sheet as described by equation (17); hence,
the boundary condition can be written as
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The matching of the inner and outer representations of the pressure occurs at the
radial location of the cylinder wall in physical space; therefore, the value of /

i
at ba

is used an the value of /
o
at a is used. At this point in the "eld, mr
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and therefore when equations (16) and (17) are substituted into equation (18), the
governing equation becomes
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In order to combine the two integrals on the right-hand side of equation (19)
a particular solution to the di!erential equation

A;2
L2

Lz2
0

!2i
u;
b2

L
Lz

0

!

u2

b4B f (z
0
)"!u2beiMK

i
z
0 P ln(K

o
Dz

0
!z D )m

r
dz (20)

must be calculated. When p"u/; the particular solution can be written as
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with Si(x) and Ci(x), the sine and cosine integral functions, de"ned as
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All together then, the di!erential integral equation can be written as
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The di!erential equation part of the expression can be solved to obtain an
integral equation for the displacement of the vortex sheet in the radial direction:
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where a
1,2

are unknown constants of integration and the integration can be
restricted to the streamwise length of the gap 2Z (as shown in Figure 1) because
m
r

vanishes along the solid walls. If the lengths are non-dimensionalized with
respect to the radius of the cylindrical duct a and denoted with an overbar, then the



Figure 1. Circular duct with a gap.
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reduced frequency becomes

p6 "ua/; (26)

and the limits of integration become !ZM "!Z/a to ZM "Z/a. For convenience,
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can be non-dimensionalized by
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The integral equation is then solved for mM
r

and a6
1,2

. The integral itself is
discretized and solved using the Gauss}Legendre integration method. A matrix
equation is formed by choosing collocation points midway between the Gauss
nodes plus one point at the leading edge of the opening. The Kutta condition is
imposed at the leading edge of the test section which dictates that mM

r
"0 on the

leading edge collocation point and on the next nearest collocation point. Having
mM
r

speci"ed on two collocation points allows a6
1,2

to be inserted into the list of
unknowns in place of the two known mM

r
values. Once mM

r
is known along the length of

the test section, the Rayleigh conductivity is calculated by numerical integration,
i.e.,
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3. RESULTS

3.1. FORCED MOTION

The results of the solution to equations (27) and (28) are described in this section.
Typically, the real and negative imaginary parts of the Rayleigh conductivity are
plotted as a function of the Strouhal number (i.e., C versus p6 and D versus p6 , where
K

r
/2a"C!iD). Here, the Rayleigh conductivity has been non-dimensionalized by

2a. Preliminary results for the conductivity of the forced problem presented in
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reference [5] have been corrected for an implementation error. The main
conclusions from the preliminary study remain unchanged.

Figure 2 shows the conductivity for a "xed length-to-diameter ratio of 1)0 and
increasing Mach numbers from 0)001 to 0)5. Several discretization schemes for
solving the integral equation (27) were tested. All gave the same result, but the
Gauss}Legendre method needed the smallest grid and took the shortest time.
Using this method, each Mach number case shown in Figure 2 takes approximately
3 CPU min to calculate.

In Figure 2, the negative imaginary part of the Rayleigh conductivity is shown as
the solid line. The imaginary part of the Rayleigh conductivity identi"es the
frequency regimes in which the vortex sheet motion will be negatively damped.
When the imaginary part of the conductivity is positive, i.e., D is negative, the
vortex sheet will absorb energy from the applied load and use this energy to sustain
Figure 2. K
R
/2a: real part (} } }), negative imaginary part (*): (a) M"0)001, (b) M"0)05,

(c) M"0)1, (d) M"0)2, (e) M"0)3, (f ) M"0)4, (g) M"0)5.
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the growth of the motion of the sheet which subsequently creates tonal noise.
Figure 2(a) shows that, in the incompressible limit, the Rayleigh conductivity for
the cylindrical duct con"guration is similar to the Rayleigh conductivity for
one-sided incompressible grazing #ow past a wall aperture [4]. One can also see in
Figure 2, that for Mach numbers less than 0)2, the Strouhal number bands in which
the imaginary part is positive (solid line dips below the x-axis) remain
approximately the same: (2)0, 4)0), (5)7, 7)0), and (8)6, 10)4). The Strouhal number is
the ratio of the radial frequency to the #uid #ow speed in the duct; therefore, the fact
that the Strouhal number bands stay the same as M increases implies that the
frequencies at which the forced vortex sheet motion creates tonal noise increase
proportionally to the Mach number.

As the Mach number increases past the incompressible regime (M(0)3) into the
compressible regime (M*0)3), the Strouhal number bands where D drops below
the real axis shift to higher Strouhal numbers, with the highest bands shifting the
most. Thus, for higher #ow speeds in the duct, the possible forced frequencies
increase non-linearly with Mach number.

The plots in Figure 3 show the e!ect of the duct gap length-to-diameter ratio on
the Rayleigh conductivity. At a "xed Mach number of 0)2, the Rayleigh
Figure 3. K
R
/2a: real part (} } }), negative imaginary part (*): (a) ZM "0)5, (b) ZM "1)0, (c) ZM "2)0.
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conductivity was calculated for duct gap length-to-diameter ratios of 0)5, 1)0, and
2)0. As the length-to-diameter ratio increases, the "rst Strouhal number regimes
where K

R
has a positive imaginary part become centered on smaller Strouhal

numbers and the total number of such regimes located between 0 and 10 increases.
Lower frequency applied loads lead to lower wavenumber variation of the vortex
sheet displacement along the gap. Thus, the gap length must be long, for the
low-frequency forcing to produce a three-way coupling between the initial
shedding, secondary shedding due to the acoustic pulse from the downstream edge,
and the applied load, that will amplify the motion of the vortex sheet. Whereas
when the gap length is shorter, coupling that will enhance the vortex sheet motion
can occur only at higher frequency (i.e., shorter wavelength of vortex motion
displacement along the gap).

3.2. RESONANCE

The Rayleigh conductivity parameter can also be used to determine the
frequencies at which the vortex sheet motion will resonate. From equation (1) it is
clear that the poles of the conductivity signify frequencies at which the rate of
volume #ux will be non-zero and thus physically these frequencies represent
the possible self-oscillation frequencies of the system (i.e., the frequencies at which
the shear layer will continue to oscillate once the forcing is terminated). When
the imaginary part of the pole is in the upper half of the complex plane, the system is
unstable and the vortex sheet motion will grow in the absence of an external force.
Physically, the real part of the unstable poles represent the frequencies at which the
shear layer spanning from the inlet to the exit may produce tones [2]. For
self-oscillation, the initial vortex shedding occurs because of unsteady disturbances
in the wall boundary layer upstream of the inlet edge.

For Mach numbers 0)05, 0)1, 0)2, and 0)5, the quantity D1/K
R
(pN ) D, has been

plotted over a set of complex reduced frequencies with real and imaginary parts
ranging from 0 to 10 (see Figure 4). The poles of the conductivity coincide with
the Strouhal numbers for which D1/K

R
(pN

p
) D"0. For each Mach number, there

are many dark regions which indicate possible poles. One set of dark regions
lies close to the real axis and another set consists of roots with larger imaginary
parts. A Newton}Raphson root-"nding technique has been employed to calculate
the poles exactly. Figure 5 shows the poles which are close to the real axis
for varying Mach number and Figure 6 shows the stages of the more unstable poles.
Each individual curve indicates an operating stage. The numerical values of the
poles for the four lower stages and the three upper stages are given in Tables 1
and 2.

The motion of the shear layer will be self-sustained at the frequencies which
correspond to the indicated Strouhal numbers. The pole trajectories cannot be
compared to previous analytical studies as was the case for the forced problem. In
previous studies, the system was assumed to be incompressible, the normalizing
velocity for the Strouhal number was always constant, and the focus was on the
di!erence between having #ow on both sides of the wall versus one-sided #ow.



Figure 4. 1/ DK
R
(pN ) D : ZM "1)0. (a) M"0)05, (b) M"0)1, (c) M"0)2, (d) M"0)3, (e) M"0)5.
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Here, there is #ow inside the duct only, i.e., on one side of the wall, and the focus of
the study is on the e!ect of increasing the #ow speed.

Paterson et al. [1] included a "gure of the background noise sound pressure level
in the UTRC open-jet wind tunnel. The "gure is reproduced in Figure 7. The inlet
nozzle was a 31 in]21 in rectangle with 5 in radius rounded corners. The test



TABLE 1

Poles of the Rayleigh conductivity closest to the real axis

Real and imaginary parts of p6

Mach Stage 1 2 3 4

0)05 2)72, 0)81 4)30, 0)74 6)03, !0)33 8)58, 0)58
0)06 2)72, 0)83 4)17, 0)27 5)53 !0)08 8)60, 0)64
0)07 2)70, 0)87 3)83, !0)11 5)43, 0)21 8)62, 0)66
0)08 2)66, 0)89 3)52, !0)29 5)44, 0)33 8)63, 0)66
0)09 2)62, 0)90 3)27, !0)38 5)46, 0)38 8)64, 0)66
0)10 2)57, 0)91 3)08, !0)42 5)48, 0)41 8)64, 0)66
0)11 2)52, 0)90 2)93, !0)43 5)49, 0)42 8)65, 0)66
0)12 2)46, 0)89 2)81, !0)43 5)50, 0)42 8)66, 0)66
0)13 2)41, 0)88 2)71, !0)42 5)51, 0)42 8)66, 0)67
0)14 2)36, 0)86 2)62, !0)41 5)52, 0)42 8)67, 0)68
0)15 2)31, 0)83 2)55, !0)38 5)53, 0)42 8)68, 0)69
0)16 2)26, 0)81 2)49, !0)36 5)53, 0)42 8)69, 0)71
0)17 2)21, 0)78 2)44, !0)33 5)54, 0)41 8)70, 0)73
0)18 2)16, 0)75 2)40, !0)29 5)55, 0)41 8)71, 0)77
0)19 2)11, 0)72 2)37, !0)26 5)56, 0)41 8)72, 0)82
0)20 2)05, 0)68 2)34, !0)22 5)57, 0)41 8)73, 0)90
0)21 2)00, 0)65 2)32, !0)19 5)59, 0)40 8)71, 1)01
0)22 1)94, 0)62 2)32, !0)15 5)60, 0)40 8)64, 1)14
0)23 1)87, 0)58 2)32, !0)12 5)62, 0)40 8)50, 1)25
0)24 1)80, 0)56 2)32, !0)09 5)64, 0)41 8)33, 1)30
0)25 1)73, 0)54 2)34, !0)06 5)67, 0)41 8)14, 1)31
0)26 1)66, 0)52 2)35, !0)05 5)70, 0)41 7)96, 1)28
0)27 1)59, 0)51 2)37, !0)03 5)74, 0)42 7)78, 1)21
0)28 1)53, 0)50 2)39, !0)03 5)79, 0)44 7)60, 1)11
0)29 1)47, 0)50 2)41, !0)02 5)86, 0)47 7)41, 0)97
0)30 1)41, 0)49 2)42, !0)02 5)95, 0)53 7)21, 0)75
0)31 1)35, 0)49 2)44, !0)02 6)05, 0)70 7)02, 0)37
0)32 1)30, 0)49 2)46, !0)02 5)99, 0)91 6)99, !0)22
0)33 1)25, 0)49 2)48, !0)02 5)88, 1)04 6)65, !0)77
0)34 1)20, 0)49 2)50, !0)03 5)76, 1)11 6)29, !0)99
0)35 1)16, 0)49 2)52, !0)03 5)65, 1)16 5)99, !1)11
0)36 1)11, 0)49 2)54, !0)04 5)54, 1)18 5)73, !1)17
0)37 1)07, 0)49 2)56, !0)05 5)43, 1)19 5)50, !1)19
0)38 1)03, 0)49 2)58, !0)06 5)33, 1)19 5)29, !1)19
0)39 0)99, 0)49 2)61, !0)07 5)24, 1)18 5)09, !1)17
0)40 0)95, 0)49 2)64, !0)09 5)14, 1)16 4)90, !1)13
0)41 0)92, 0)49 2)67, !0)11 5)05, 1)13 4)73, !1)08
0)42 0)88, 0)49 2)71, !0)13 4)96, 1)09 4)56, !1)01
0)43 0)85, 0)49 2)76, !0)16 4)86, 1)05 4)39, !0)93
0)44 0)82, 0)49 2)83, !0)21 4)77, 0)99 4)21, !0)82
0)45 0)79, 0)49 2)91, !0)28 4)68, 0)92 4)03, !0)68
0)46 0)76, 0)49 3)01, !0)42 4)59, 0)83 3)83, !0)45
0)47 0)73, 0)48 2)98, !0)66 4)50, 0)71 3)73, !0)08
0)48 0)70, 0)48 2)86, !0)81 4)45, 0)54 3)71, 0)26
0)49 0)68, 0)48 2)74, !0)90 4)50, 0)40 3)60, 0)51
0)50 0)65, 0)47 2)62, !0)96 4)56, 0)33 3)48, 0)65
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TABLE 1

Continued

Real and imaginary parts of p6

Mach Stage 1 2 3 4

0)51 0)63, 0)47 2)51, !1)00 4)61, 0)29 3)38, 0)75
0)52 0)60, 0)46 2)41, !1)02 4)63, 0)27 3)28, 0)81
0)53 0)58, 0)46 2)32, !1)03 4)65, 0)26 3)20, 0)86
0)54 0)56, 0)46 2)23, !1)04 4)67, 0)25 3)12, 0)89
0)55 0)53, 0)45 2)14, !1)03 4)67, 0)25 3)05, 0)91
0)56 0)51, 0)44 2)07, !1)03 4)66, 0)25 2)98, 0)92
0)57 0)49, 0)44 1)99, !1)01 4)64, 0)24 2)91, 0)93
0)58 0)47, 0)43 1)93, !1)00 4)61, 0)24 2)84, 0)92
0)59 0)45, 0)43 1)86, !0)98 4)54, 0)23 2)77, 0)91
0)60 0)43, 0)42 1)80, !0)96 4)44, 0)22 2)70, 0)89
0)61 0)42, 0)41 1)75, !0)94 4)32, 0)22 2)64, 0)87
0)62 0)40, 0)41 1)69, !0)92 4)18, 0)23 2)57, 0)85
0)63 0)38, 0)40 1)64, !0)90 4)03, 0)24 2)50, 0)83
0)64 0)36, 0)39 1)59, !0)87 3)88, 0)25 2)43, 0)80
0)65 0)35, 0)39 1)55, !0)85 3)74, 0)25 2)36, 0)77
0)66 0)33, 0)38 1)50, !0)83 3)60, 0)26 2)28, 0)75
0)67 0)31, 0)37 1)46, !0)80 3)46, 0)26 2)21, 0)72
0)68 0)30, 0)36 1)42, !0)78 3)33, 0)26 2)15, 0)69
0)69 0)28, 0)35 1)38, !0)75 3)21, 0)26 2)08, 0)66
0)70 0)27, 0)35 1)34, !0)73 3)09, 0)26 2)01, 0)63
0)71 0)26, 0)34 1)30, !0)70 2)97, 0)26 1)95, 0)61
0)72 0)24, 0)33 1)27, !0)68 2)86, 0)26 1)88, 0)58
0)73 0)23, 0)32 1)23, !0)65 2)75, 0)25 1)82, 0)55
0)74 0)21, 0)31 1)20, !0)63 2)64, 0)25 1)76, 0)52
0)75 0)20, 0)30 1)16, !0)60 2)54, 0)24 1)70, 0)50
0)76 0)19, 0)29 1)13, !0)58 2)43, 0)23 1)65, 0)47
0)77 0)17, 0)29 1)10, !0)55 2)33, 0)23 1)59, 0)44
0)78 0)16, 0)28 1)06, !0)53 2)23, 0)22 1)54, 0)41
0)79 0)15, 0)27 1)03, !0)50 2)13, 0)21 1)49, 0)38
0)80 0)14, 0)26 1)00, !0)47 2)03, 0)21 1)44, 0)35
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section was 22)5 in long and was only semi-open in that it had plates along two
sides. The collector was also a rounded rectangle just slightly larger than the inlet
nozzle. The SPL spectrum for a #ow speed of 575 ft/s contained several spikes. The
tones were later eliminated by redesigning the inlet using tabs. However, the
spectrum without the tabs can be used to validate the results shown in Figures
5 and 6 for the resonant frequencies of the system. The duct in the experiment is
a rounded rectangle that is approximated here as a cylinder. The diagonal of the
rectangle is 37 in. If this is used as the diameter of the model cylindrical duct then
the length-to-diameter ratio in the model is approximately 1)6. If however
a cylinder that can be completly inscribed in the rectangle is used, the diameter
would be 21 in with a corresponding and the length-to-diameter ratio of
approximately 1)0.



TABLE 2

Poles of the Rayleigh conductivity farther above from the real axis

Real and imaginary parts of p6

Mach Stage 1 2 3

0)05 2)21, 5)24 3)21, 3)88 4)27, 6)34
0)06 2)20, 5)04 3)13, 3)89 4)25, 6)27
0)07 2)20, 4)85 2)98, 3)91 4)26, 6)20
0)08 2)22, 4)67 2)84, 3)94 4)27, 6)14
0)09 2)25, 4)47 2)71, 4)00 4)29, 6)09
0)10 2)28, 4)20 2)61, 4)14 4)31, 6)05
0)11 2)14, 3)97 2)68, 4)26 4)34, 6)01
0)12 2)04, 3)84 2)74, 4)29 4)36, 5)98
0)13 1)96, 3)74 2)79, 4)29 4)39, 5)94
0)14 1)89, 3)65 2)82, 4)28 4)42, 5)91
0)15 1)84, 3)57 2)85, 4)27 4)44, 5)88
0)16 1)80, 3)50 2)88, 4)26 4)47, 5)85
0)17 1)77, 3)44 2)90, 4)24 4)50, 5)82
0)18 1)74, 3)38 2)93, 4)23 4)52, 5)79
0)19 1)72, 3)33 2)94, 4)20 4)55, 5)76
0)20 1)70, 3)28 2)97, 4)19 4)57, 5)73
0)21 1)68, 3)23 2)99, 4)17 4)59, 5)69
0)22 1)67, 3)18 3)01, 4)15 4)62, 5)65
0)23 1)66, 3)14 3)03, 4)14 4)63, 5)60
0)24 1)66, 3)10 3)05, 4)12 4)65, 5)55
0)25 1)66, 3)06 3)07, 4)10 4)66, 5)49
0)26 1)65, 3)02 3)09, 4)08 4)66, 5)43
0)27 1)66, 2)98 3)11, 4)06 4)66, 5)37
0)28 1)66, 2)94 3)13, 4)04 4)66, 5)30
0)29 1)66, 2)90 3)15, 4)03 4)65, 5)23
0)30 1)67, 2)86 3)17, 4)01 4)63, 5)16
0)31 1)68, 2)83 3)19, 3)99 4)61, 5)09
0)32 1)69, 2)79 3)22, 3)97 4)59, 5)02
0)33 1)70, 2)76 3)24, 3)96 4)56, 4)95
0)34 1)71, 2)72 3)26, 3)94 4)52, 4)87
0)35 1)72, 2)68 3)28, 3)92 4)49, 4)80
0)36 1)74, 2)65 3)31, 3)91 4)45, 4)73
0)37 1)75, 2)61 3)34, 3)90 4)40, 4)65
0)38 1)77, 2)57 3)36, 3)88 4)36, 4)58
0)39 1)78, 2)53 3)39, 3)87 4)31, 4)51
0)40 1)80, 2)49 3)43, 3)86 4)26, 4)44
0)41 1)81, 2)45 3)46, 3)85 4)22, 4)37
0)42 1)83, 2)41 3)50, 3)85 4)17, 4)30
0)43 1)84, 2)36 3)53, 3)84 4)12, 4)23
0)44 1)86, 2)32 3)57, 3)84 4)07, 4)15
0)45 1)87, 2)27 3)60, 3)85 4)04, 4)07
0)46 1)88, 2)22 3)62, 3)87 4)02, 3)97
0)47 1)89, 2)17 3)62, 3)89 4)03, 3)87
0)48 1)89, 2)12 3)58, 3)89 4)07, 3)80
0)49 1)90, 2)07 3)54, 3)88 4)13, 3)74
0)50 1)90, 2)01 3)50, 3)84 4)19, 3)68
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TABLE 2

Continued

Real and imaginary parts of p6

Mach Stage 1 2 3

0)51 1)90, 1)96 3)46, 3)80 4)25, 3)64
0)52 1)89, 1)91 3)42, 3)76 4)32, 3)60
0)53 1)88, 1)86 3)38, 3)70 4)40, 3)55
0)54 1)87, 1)81 3)34, 3)65 4)48, 3)50
0)55 1)85, 1)76 3)30, 3)59 4)57, 3)44
0)56 1)84, 1)71 3)27, 3)53 4)67, 3)35
0)57 1)82, 1)67 3)23, 3)46 4)75, 3)23
0)58 1)80, 1)63 3)20, 3)39 4)78, 3)05
0)59 1)77, 1)59 3)17, 3)32 4)73, 2)88
0)60 1)75, 1)55 3)15, 3)24 4)62, 2)76
0)61 1)72, 1)52 3)12, 3)16 4)50, 2)68
0)62 1)69, 1)49 3)10, 3)07 4)38, 2)63
0)63 1)66, 1)46 3)08, 2)98 4)27, 2)60
0)64 1)64, 1)43 3)05, 2)88 4)16, 2)59
0)65 1)61, 1)40 3)01, 2)77 4)08, 2)59
0)66 1)58, 1)38 2)97, 2)66 4)01, 2)60
0)67 1)54, 1)36 2)92, 2)56 3)96, 2)60
0)68 1)51, 1)34 2)86, 2)46 3)92, 2)60
0)69 1)48, 1)32 2)79, 2)36 3)90, 2)59
0)70 1)44, 1)31 2)72, 2)28 3)88, 2)56
0)71 1)41, 1)29 2)65, 2)20 3)87, 2)53
0)72 1)37, 1)27 2)59, 2)13 3)87, 2)49
0)73 1)33, 1)26 2)52, 2)06 3)88, 2)45
0)74 1)30, 1)24 2)46, 1)99 3)91, 2)38
0)75 1)26, 1)23 2)40, 1)93 3)93, 2)26
0)76 1)21, 1)21 2)34, 1)86 3)91, 2)11
0)77 1)17, 1)19 2)29, 1)80 3)84, 1)98
0)78 1)13, 1)18 2)23, 1)74 3)73, 1)86
0)79 1)08, 1)16 2)18, 1)67 3)59, 1)75
0)80 1)03, 1)14 2)12, 1)61 3)41, 1)67
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The #ow speed translates to a Mach number of 0)52 when calculated using the
speed of sound as 1115 ft/s. The real part of the Strouhal numbers for the unstable
poles for a cylindrical duct with gap length-to-diameter ratio of 1)0 and a #ow speed
Mach number of 0)52 can be found from either Figures 5 and 6 or Tables 1 and 2.
The values from the lower stages are 0)601, 3)28, and 4)63; the values from the upper
stages are 1)89, 3)42, 4)32. The frequency corresponding to these Strouhal numbers
is calculated easily using

f"
u
2n

"

pN ;
2na

,

where a is roughly 10)5 in, and thus the predicted frequencies are 63, 343, and
484 Hz for the lower stages and 198, 358 and 452 Hz for the upper stages. These



Figure 5. Set of poles of the Rayleigh conductivity close to the real axis for varying Mach number.

Figure 6. Set of poles of the Rayleigh conductivity farther from the real axis for varying Mach
number.
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frequencies are upper estimates on the true frequencies, because the equivalent
length-to-diameter, ZM , used in the model is the lower bound of the possible choices
for the ratio. Figure 3 shows that the dependence on ZM of the Strouhal number is of
the form 1/ZM , so that when ZM is 1)6, the frequencies become 39, 214, and 322 Hz for
the lower stages and 132, 239, and 302 Hz for the upper stages. The 1/3 octave band
frequencies reported by Paterson et al. [1] were centered at 50, 200, and 400 Hz.
(Figure 7 also shows a tone centered at 800 Hz which is outside of the range of



Figure 7. Background sound pressure level measurements from UTRC acoustic research tunnel
[1, p. 430].
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frequencies computed in this study.) Therefore, the measured frequencies lie in the
bands: (45}56 Hz), (180}224 Hz), (355}450 Hz).

The dotted line in the experimental results is the sound pressure level after the
inlet was redesigned to have tabs. In the redesigned tunnel, the lowest tone still
exists and the upper tones are eradicated; however, another tone appears. This tone
may exist when there are no tabs on the inlet, but its magnitude does not allow it to
stand out from the background noise at that frequency. The frequency for this
secondary tone is in the 1/3 octave band centered at 125 Hz in the experiments.
This tone coincides with the predicted frequency from the "rst upper stage. This is
the only predicted frequency in the upper stage that does not have a lower stage
frequency close to it and thus it is not surprising that it is less dominant than the
other tones. Overall, the agreement between the predicted resonant frequencies and
those reported in the experiment is excellent even though the model geometry does
not match the experimental con"guration perfectly.

4. CONCLUSIONS

A method has been presented for approximating the frequencies which
correspond to resonant and forced shear layer motion in the outer edge of
a thin-walled cylindrical duct with a gap. These frequencies are of interest because
of their association with tonal noise production by the system. This paper corrects
the preliminary results presented in reference [5] for the forced response and
extends the study to include predictions of the resonant frequencies.
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The method is based on the linearized equations of motion and relies on the
analysis of the Rayleigh conductivity parameter. Because the method is based on
linear theory, only the frequency and not the amplitude of the self-sustaining
oscillation of the shear layer can be calculated.

For the forced problem, the frequency regimes in which the shear layer
motion will amplify when an external load is applied are related to the
Strouhal number regimes for which the imaginary part of the Rayleigh conduc-
tivity is positive. At low Mach numbers, the frequency bands for which forced
shear layer motion ampli"cation will occur in the cylindrical duct gap compare
well with those found in similar studies involving incompressible #ow past wall
openings. Further, it is shown that the center frequencies of the regimes increase as
the Mach number increases but decrease as the gap length-to-diameter ratio
increases.

The real part of the poles of the Rayleigh conductivity correspond to the possible
self-oscillation Strouhal numbers, with resonance occurring when the imaginary
part of the Strouhal number is positive (i.e., Im(p6 )'0). The predicted resonant
frequencies are obtained from the Strouhal number which is based on the radius of
the test section and the velocity of the mean #ow. The poles are found for Mach
numbers ranging from 0)001 to 0)8. Two dominant sets of frequency stages are
found for #ow through a cylindrical duct with a gap. One set of stages has Strouhal
numbers with imaginary parts close to the real axis while the other set has larger
positive imaginary parts. Good comparison between the predicted resonant
frequencies and experimental data at a Mach number of 0)52 helps to validate the
method.

The Green's function required for the calculation of the conductivity is easily
obtained for the cylindrical duct, and its behavior is captured with an asymptotic
form. This adds to the speed of the computation. For other duct shapes, the results
for the cylindrical duct may approximate the resonant frequencies well as shown in
the experimental validation. However, one can calculate the true frequencies for
di!erent duct shapes by rede"ning Green's function. For many duct shapes the
Green's function will have to be calculated numerically which will slow the
computation. Overall, the method of analysis has been shown to work well, and
when compressibility e!ects are added, the method still maintains its main
advantage over other methods by providing predictions quickly.
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APPENDIX A: ASYMPTOTIC FORM OF GREEN'S FUNCTION

The Green's functions for the interior and exterior of the cylinder are respectively
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In this application rPa and we are interested in the case when z
0

is close to z.
Under these conditions the integral can be simpli"ed by substituting into the
integrals the quantity

j"k (z
0
!z), dj"dk(z

0
!z),

which gives for the inner Green's function
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One can then use the asymptotic behavior of the Bessel functions:
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to obtain a limiting form of the integral
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[9]. A similar simpli"cation follows for the outer Green's

function.
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